
PROGRAMING IN C

Data processing in computer
Bit Byte Word

vEvery information stored in a computer is encoded as a combination of
zeros & ones
vThese zeros & ones are called bits (binary digits)

• Is a single binary digit either a 0 or 1Bit
• Eight bits are called a byte
• Normally single character occupy 1 byteByte

• Half of a byte or 4 bits Nibble
• Group of bits
• Varies from machine to machine

• Eg: 16-bit, 32-bit, 64-bit words
Word

Data processing in computer

Data processing in computer

Data processing in computer
Computer bus:
• Is a communication system that transfers data between components
• The size or width of a bus is how many bits it carries

• Eg: 8 bits, 16 bits, 32 bits, 64 bits etc.

Address bus: Transfer address of memory

Data bus: Send and receive data to and from memory, CPU, input-output

devices

Control bus: Send control signals between processor and other components

Software: Is a program/set of programs that instructs the computer what to
do
• Includes programs, procedures, and routines associated with the operation

of a computer system

Computer Software

Two types
1. System software

2. Application software

Application software
• Set of one or more programs designed to perform some specific

application
• Eg: MS Word, Photoshop, AutoCAD, Web Browsers

Computer Software

System software
• Set of one or more programs designed for computer system

management
• It control the operations of computer system
• Acts as an interface between application software & computer

hardware
• Eg:

• Operating system (windows)
• Language translators (compilers, interpreters)
• Utility programs (anti-virus, disk cleaners)

Computer Software

• Acts as an interface between user and

hardware

• Manages the computer system resources

such as memory, processor, storage, input-

output devices and files

• Eg: DOS, windows, LINUX

Operating System
Operating system (OS) is system software which operates the

computer system & manages its resources

Memory management
• Keeps tracks of primary memory, i.e., what part of it are in use by whom,

what part are not in use
• Allocating memory to running programs & reallocating the memory when

programs are terminated
Processor management
• In multiprogramming environment, the OS decides which process gets the

processor when and for how much time. This function is called process
scheduling

• Allocates the processor (CPU) to a process & de-allocates processor when no
longer required

• Keeps tracks of processor and status of process

Operating System – Basic Functions

Device management
• Operating System manages device communication via their respective

drivers
• Keeps tracks of all devices
• Allocate input/output devices to running processes and decides on the

needed time period
File management
• Manages the file system
• Opening & closing files, provides access permission to files, keeps track of

files, their status & memory locations

Operating System – Basic Functions

• The computer language is defined as code or syntax which is used to

write programs for specific applications

• The computer language is used to communicate with computers

• Computer language can be classified into three:

1. Machine language

2. Assembly language

3. High-level language

Computer Language

Machine language: Is the language understood by a computer without any
translation
• Made up of instructions and data that are all in binary numbers (0 and 1)
• Is a low level language / first generation language

Machine Language

•Advantage

• Fast program processing since no translator required

Disadvantages

• Very difficult to program
• Programmer has to remember a lot of codes
• Hardware dependent
• Prone to errors while writing code
• Difficult to debug the program

Machine Language

• A low level language/second generation
• Is almost like the machine code , except that it uses words in place of

binary digits
• These words are called mnemonics
• Is machine dependent

Assembly Language

•Advantages:
• Assembly language is easier to understand than machine language
• Easier to correct errors and modify program instructions
• Has the same efficiency of execution as the machine level language

Disadvantages:
• Assembly language is machine dependent

Assembly Language

Assembler:
Translator which converts program in assembly language

(source code) to machine language (object code)

Assembly Language

PROGRAMING IN C

• High level languages were developed to make programming
easier
• The instruction sets are more compatible with human

language
• Eg: C, Java
• Programs written in high level languages must also be

translated into machine language

High Level Language

Advantages:

• High level languages are programmer friendly

• It is machine independent language & program oriented

• Less prone to errors

• Easy to find and debug errors

Disadvantage:

• Slow Execution

High Level Language

Translator
Translator is a program that converts source code into object code

Generally, there are three types of translators:
1. Compilers
2. Interpreters
3. Assemblers

• A compiler is a special program that processes statements written in
a programming language (source code) and translates them into
machine language (object code)

• C, C++
• Compilers translate the entire program to machine language

before executing
• Steps:

• Lexical analysis: To recognise the strings in the source code
• Parsing: To analyse the grammatical structure of statement
• Code generation: Generation of object program

Compiler

• Lexical analysis: To recognise the strings in the source code like
variables, functions, etc.

int value = 100;
Int – keyword, value – identifier, = operator, ; symbol

• Parsing: To analyse the grammatical structure of statement
• It checks if the given input is in the correct syntax of the programming
language

• Code generation: Generation of object program in low level/machine
language equivalent to source code

Compiler

ØAn object code need services from operating systems or utility
programs

Compiler

Linker:
§Is special program that combines the object files generated by compiler
to create an executable file
§It also merges two or more separate object programs and establishes link
among them
Loader:
§Is special program that takes input from linker, loads it to main memory,
and prepares this code for execution by computer
§Loader allocates memory space to executable module in main memory

ØOnce compiling & linking is done, the program can be loaded &
executed any number of times without any need to return to
source code
ØIf any change is to be made, it must be done in source code and

modified program can be complied and linked and loaded

Compiler

• A special program that processes statements written in a programming
language (source code) and translates them into machine language
(object code)

• Interpreter translates one statement at a time & executes it
• Translation happening during the execution phase
• Python, MATLab

Interpreter

Compiler Interpreter

Takes entire program as input Works on statement by statement

Generates an intermediate code - object code Does not generate an intermediate code

Memory requirement is more since object
code is generated

More memory efficient

Executes control/logical statements like if, else
faster

Executes control/logical statements slower
than compiler

Takes more time to execute source code but
overall execution time is comparatively faster

Takes less time to execute source code but
overall execution time is comparatively slower

Once compiled can run any time Programs interpreted line by line every time
when run

Errors are reported after entire program is
checked

Error is reported at once when an error is
encountered

Debugging is difficult Easier to debug since errors are reported
when encountered

Structured Program
• Structured Programming (modular programming): Is a

programming approach which is a disciplined and ordered

approach to develop a program

• Code will execute instruction by instruction one after the other

• The program may be divided into independent group of

statements or modules

Structured Program
• Structured Programming (modular programming): Is a programming

approach which is a disciplined and ordered approach to develop a
program

• Code will execute the instruction by instruction one after the other
• The program may be divided into independent group of statements or

modules
• It doesn’t support the possibility of jumping from one instruction to some

other with the help of any statement
• The instructions in this approach will be executed in a serial and structured

manner
• Structured program uses single-entry and single-exit elements

The structured program mainly consists of three types of elements:
• Sequence Statements - order of instructions
• Selection Statements – when there is a decision to execute
• Iteration Statements - process of repeating a set of instructions

Structured Program

Structured Program
Sequential Structure: Follows a straight

line execution mechanism in which

sequence of statements are executed in

a linear fashion

Structured Program
Selection Structure:

Multiple branching statement where

there are many possible & logical test

must be performed to get output

Structured Program
Iteration/Looping Structure:
• A condition will be evaluated at the

starting of a loop.
• Looping action continues until the

expression in loop is met

• Easier to read and understand
• User friendly
• Easier to maintain or modify since individual modules can be

corrected without changing entire program
• Mainly problem based instead of being machine based
• Development is easier as it requires less effort and time
• Easier to debug

Structured Program: Advantages

Problem solving by a computer system involve following steps:
1. Problem definition
2. Analysis & design
3. Coding
4. Running the program
5. Debugging
6. Testing
7. Documentation

Problem Solving

• Is a step by step procedure to solve a problem
• Consists of number of statements/instructions designed to

perform a specific task
• Statements must be precise & well defined

Algorithm

Algorithm to compute area of a circle
Step 1: Read Radius
Step 2: Compute Area = 3.14 x radius x radius
Step 3: Print Area of Circle = Area
Step 4: Stop

1. Input: May accept zero or more inputs
2. Output: Should produce at least one output
3. Definiteness: Each instruction must be clear, well-defined and precise
4. Finiteness: It should end after some time. Should not enter into an infinite loop
5. Effectiveness:

• All the steps required to get to output must be feasible with the available resources
• It should not contain any unnecessary and redundant steps which could make an

algorithm ineffective
6. Independent

• Statements must independent of any programming code

Characteristics of Algorithm

• Diagrammatic representation of an algorithm
• Easy way to understand the problem

Flowchart

Flowchart

• Pseudocode is an abstract form of a program
• Uses informal expressions to describe logic of program
• Program is represented in words/phrases, but syntax is not followed

Pseudocode

Pseudocode to check number is odd or even
1. Read n1
2. if n1/2 == 0
3. PRINT “ Number is Even”
4. Else
5. PRINT “ Number is Odd”
6. End if
7. End Program

ODD OR EVEN?

ALGORITHM
1. To exchange values of two variables A & B
2. To find the roots of a quadratic equation, ax2+bx+c=0

CHARACTER SET
TOKENS

ØCharacter set
ØTokens
ØKeywords
ØIdentifiers
ØConstants
ØData-types
ØVariables
ØSymbolic constants
ØLibrary functions
ØHeader files

Contents

Character Set
Character set defines the valid characters that can be used in source
programs or which can be interpreted when a program is running

Characters in C are grouped into:
1. Letters/Alphabets
2. Digits
3. Special character
4. White spaces

Character Set

Tokens in C
Tokens: The smallest individual units in a program
• It is each and every word and punctuation in C program
• The compiler breaks a program into tokens and proceeds to the various

stages of the compilation

A token is divided mainly into six different types:
1. Keywords
2. Identifiers
3. Constants
4. Strings

5. Special Symbols
6. Operators

Tokens in C

Keywords & Identifiers
In 'C' every word can be either a keyword or an identifier

Keyword:
Ø Are reserved words with some predefined meaning
Ø Eg: int, if, else
Ø Assigned by compiler designer of the program
Ø All keywords have fixed meanings and these meanings cannot

be changed

Keywords in C

Example:
int a = 10;
float b = 10.3;

Keywords & Identifiers
In 'C' every word can be either a keyword or an identifier

Identifier:
Ø Identifier refers to name given to elements such as variables, functions, etc.
Ø Are user defined and may consists of sequence of letters & digits
Ø Identifiers must be unique

Example:
float marks;
float average;
Ø float – keyword
Ø marks, average - identifiers

Rules for Identifies
1. Must begin with an alphabet (or underscore)

2. Must consist of only letters, digits or underscore

3. Only first 31 characters are significant

4. Cannot use a keyword

5. Must not contain white space

6. Upper case & lower case letters are distinct

Constants
Constants: Refer to fixed values that do not change during the execution
of a program

Integer Constants
Integer Constants:
An integer constant refers to a sequence of digits
Three types of integers:
1. Decimal integer
2. Octal integer
3. Hexadecimal integer

Integer Constants
Decimal integers (base 10)
§ Consist of a set of digits, 0 through 9, preceded by an optional – or + sign
§ Eg: 123, -465

Octal integer (base 8)
§ Consists of any combination of digits from the set 0 through 7 with a leading 0
§ Eg: 037, 0777, 0435

Hexadecimal integer (base 16)
§ Consists of sequence of digits preceded by 0x or 0X
§ May also include alphabets A through F or a through f
§ Eg: 0X3, 0x9f

Integer Constants

Real/Floating Constants
§ Numbers containing fractional parts are called real or floating point

constant
§ Can include integer part, decimal point, fractional part, exponential part

1. Fractional or Normal form
2. Exponential or Scientific form

§ Eg: 315.3, 1.5e+5

Ø Character constant is a single character enclosed in a ‘single
quotes’
Ø Eg: ‘5’, ‘A’
ØIt is to be noted that the character ‘5' is not the same as 5

ØEach character constant has a corresponding ASCII value
ØEg: ‘A’ ASCII value 65
ØEg: ‘B’ ASCII value 66
Ø ASCII value is the numeric code of a particular character

Character Constant

ØString constant is a set of characters enclosed in “double quotes”
ØEg: "HELLO”, "1234"

String & Backlash Character Constant

Backlash Character Constant
Ø C supports some character constants having a backslash (\) in front of it
Ø Backslash characters have a specific meaning which is known to the

compiler
Ø They are also termed as "Escape Sequence“
Ø Eg:
Ø \n – new line
Ø \t – horizontal tab
Ø \v – vertical tab

Backlash Character Constant

• Are used to store different types of data, Eg: alphabets, digits, strings, etc.
• A system used for declaring variables or functions of different types
• The type of a datatype determines

• How much space it occupies in storage
• How the bit pattern stored is interpreted
• Which specific operations can be performed over it

Datatype

1.1. Primary data
types

• Integer (int)
• Character (char)
• Floating Point

(float)
• Double precision

floating point
(double)

• Void (void)

2. Derived data type

• Array
• Function
• Pointer
• Reference

3. User-defined data
type

• Structure
• Union
• Enumeration

Datatype

char:
It holds a single character and requires a single byte of memory in almost all
compilers
int:
 Holds integer quantities that do not contain a fractional part

float:
Holds decimal numbers with a fractional components
double:
It is used to store decimal numbers (floating point value) with double precision
void:
Used along with functions that do not return any value to the call

Primary Datatype

Primary Datatype

Primary Datatype

• Variable is a valid identifier used for naming & declaring data items such as,
integers, arrays, functions etc.

• Eg: age, height
• A variable may take different values at different times during execution

Variable

• Any variable must be declared properly before it is used in the program

Syntax for variable declaration:
data-type variable name;

OR
data-type variable name = value;

Example
int age, height;
int c = 3;
float average;

Variable Declaration

The declaration does two things
1. Tells the compiler the variable name
2. Specifies what type of data the variable will hold

Integer variable declaration
int a;
Character variable declaration
char c;
Floating variable declaration
float f;

Symbolic Constants
Symbolic constant:
§ Is a way of defining a variable constant whose value cannot be changed
§ If a numeric constant need to be used many times in a program, it will be

difficult to modify or update its value
§ Instead a symbolic constant can be defined to hold this constant

define symbolic-constant value of constant
define PI 3.14
define NAME ANU

§ Once the symbolic constant is initiated in the program it cannot be
changed

Library Functions
§ The standard library functions are built-in functions in C

programming
§ Each library function in C performs specific operation
§ We can make use of these library functions to get the pre-defined

output instead of writing our own code to get those outputs
§ A library function is accessed by simply writing the function name,

followed by a list of arguments enclosed in paranthesis, which
represent the information being passed to the function

§ Eg: printf(…), sqrt (a)

Header files
§ Header files are files with .h extensions and include several C

function definitions
§ Before using any predefined function in C, we have to include

the header file in which that function resides
§ Eg: stdio.h header file before using printf
§ Header files contain function prototypes, datatype definitions

for standard library functions
§ Header files are included in the program with a #include pre-

processor directive and file name in <> brackets
§ stdio.h, math.h, ctype.h, string.h

CONTROL
STATEMENTS

§Statements in a program are executed in the order they appear in
program

§This kind of execution is termed sequential execution

§ In most programs it is necessary to manipulate this order to:

§Select a set of statements from several alternatives

§Skip certain statements based on some conditions and continue
from another point

§Repeat a set of statements until a specified condition is fulfilled

§For such processes CONTROL STATEMENTS must be used

CONTROL STATEMENTS

CONTROL STATEMENTS
Control statements enable us to specify or direct the

flow of program
i.e, The order in which the instructions in a program

must be executed

There are three types of control statements
in C:
1.Conditional control statements (if, switch
etc.)
2.Loop control statements (while, for, etc.)
3.Jump statements (break, goto, continue)

§Used when required to check a condition
§ Involves performing a logical test – results either TRUE or FALSE
§Depending on this the statements to be executed are

determined
§Called CONDITIONAL EXECUTION
§ Include statements such as:
ØIf
ØIf-else
ØSwitch

Conditional Control
Statements

• The if statement is used to control the flow of execution of
statements

• The different forms by which if statement can be implemented is:
ØSimple If
ØIf-else
ØNested if
ØElse if ladder

if STATEMENTS

• The general form of a simple if statement is:

Simple if statement

If (condition to be checked)
{
Statement OR set of Statements;
}

• If the result of condition is true – statement immediately
following if will be executed

• If the result of condition is false – control transfers to the next
executable statement outside body of if

/*Program to check whether even number*/
main()
{

int n;
scanf(“%d”, &n); /* Enter a number*/
if ((n%2)==0);

printf(“even number”)
}

Simple if statement

• The if…else statement is an extension of the simple if statement
• The general form of a simple if statement is:

If – else Statements

if (condition)
{
Statement 1;
}

else
{
Statement 2;
}

• If the result of condition is true – statement 1

• If the result of condition is false – statement 2

If – else Statements

• If Statement Or else Statement will be executed, not both
• In both cases, the control is transferred subsequently to the next

statement

/* program to check whether two numbers are equal*/
main()
{

int M,N;
printf(“ Enter values of M and N \n”);
scanf(“%d %d”, &M, &N);
If (M==N)

printf(“M and N are equal \n”);
else

printf(“M and N are not equal \n”);
}

If – else Statements

• Used when a series of decisions are involved – will have to
select more than two alternatives
• Hence, will have to use more than one if- else statement

Nested if statement

if (condition 1)
{

if (condition 2)
{

statement 1;
}
else
{

statement 2
}

}
else
{
statement 3
}

Nested if statement

/* program to find largest of 3 numbers*/
If (A>B)
 {

If (A>C)
printf(“A is the largest \n”);

else
 printf(“C is the largest \n”);

 }
else
 {

If (B> C)
printf(“B is the largest”);

else
 printf(“C is the largest”);

 }

Nested if statement

• The else if ladder is used when multipath decisions are involved
• A multipath decision is a chain of ifs in which the statement

associated with each else is an if

else if ladder

if (condition 1)
statement 1;

else if (condition 2)
statement 2;

else if (condition 3)
statement 3;

……….
else

default-statement;
Statement -x

else if ladder
Ø Conditions are evaluated from top to

bottom

Ø When a true condition is found

Ø Statement associated with it will
be evaluated

Ø Then control will be transferred to
statement – x (skipping the rest)

Ø When all conditions are false

Ø Final else with default statement will
be executed

• Switch statement is a multi branch decision structure
• Switch statement causes a particular group of statements to be

chosen from several available groups
• The selection is based upon the current value of an expression

which is included within the switch statement

Switch statement

Switch statement
switch (expression)
{
 case value-1:

statement-1;
break;

 case value-2:
statement-2;
break;

………
………
default :

default statement;
break;

}
statement-x;

• Expression is an integer expression or characters
• Value 1, value 2 etc. are case labels and should

be unique
• When switch is executed the value of expression

will be compared with Value 1, value 2 etc.
• If a case whose value matches with value of

expression is found, statements of that case is
executed

• Break statement indicates end of each case
• Transfer control to outside body of switch

• Default is optional
• Will be executed if value of expression does not

match with any case values

Switch
statementswitch (expression)

{
 case value-1:

statement-1;
break;

 case value-2:
statement-2;
break;

………
………
default :

default statement;
break;

}
statement-x;

char colour;
colour = getchar();
switch (colour)
{
case ‘R’:

printf(“Colour is RED”);
break;

case ‘G’:
printf(“Colour is GREEN”);
break;

case ‘Y’:
printf(“Colour is YELLOW”);
break;

Default:
printf(“No colour given”);

}

PROGRAMMIN
G IN C

CONTROL STATEMENTS
Control statements enable us to specify or direct the

flow of program
i.e, The order in which the instructions in a program

must be executed

There are three types of control statements
in C:
1.Conditional control statements (if, switch
etc.)
2.Loop control statements (while, for, etc.)
3.Jump statements (break, goto, continue)

Decision Making & Looping

• Looping is the programing technique in which group of statements
will be executed repeatedly, until certain specified condition is met
• Also called repetitive or iterative control mechanism
• A loop consists of 2 parts
• Body of loop
• Control statement

• Control statements – perform a logical test resulting in a true or
false result
• Body of loop – if logical test result is true, statements in the body of

loop will be executed. Otherwise loop will be terminated

Loop Control Structures

Loop Control Structures

The control statements can either be placed before or after the body
of loop
• Entry controlled loop or pre-test loop
• Control statements placed before body of loop
• Conditions are tested before the start of the loop execution

• Exit controlled loop or post-test loop
• Control statements placed after body of loop
• The test is performed at the end of the body of the loop and

therefore the statements are executed unconditionally for the
first time

Loop Control Structures

Steps of efficient loop control systems:
1. Initialisation
• To set the initial value for loop counter
• May be an increment loop counter or decrement loop

counter
2. Decision
• An appropriate test condition to determine whether to

execute loop or not
3. Updation
• Incrementing or decrementing the counter value

Loop Control Structures
for (n = 1; n <= 10; n ++)

Syntax:

while (condition)

{

 statements;

}

while loop statement
• while is an entry-controlled loop

statement
• The test-condition is evaluated first
• If the condition is true - then the

associated statements will be executed
• If the condition is false – control comes

out of the loop and continues with the
next executable statement
• After every repetition of loop, condition is

checkd to decide whether to continue the
loop or not

while loop statement
//Program to print sum of first 5 numbers
void main ()
{
int n= 1; int sum = 0;
while (n<=5)
{
 sum = sum + n;
 n=n + 1;
} // end of while
printf(“sum = %d”, sum);
} // end of main

do-while statement
Syntax:

do
{

 statements;

} while (condition)

• do-while is an exit controlled loop
statement

• Test for repetition is made at the end
of each pass

• The process continues as long as the
condition is true

• When the condition becomes false,
the loop will be terminated and the
control goes to the next statement
outside while

• The statements of the loop is always
executed at least once

do-while statement

do-while statement
// Program to print sum of first 5 numbers
void main ()
{
int n= 1; int sum = 0;
do
{
 sum = sum + n;
 n++;
} while (n<=5) // end of while
printf(“sum = %d”, sum);
} // end of main

Syntax:
for (initialization ; test-condition ; increment)
{
 statements;
}

for loop statement

• The for loop is an entry-controlled loop

The execution of for loop statement is as follows:
1. Initialization of the control variables is done first, using assignment statements
2. The value of the control variable is tested using the test condition

• If the condition is true, the body of the loop is executed; otherwise the loop
is terminated and the execution continues with the statement that
immediately follows the loop

3. When the body of the loop is executed, the control is transferred back to the
for statement

4. Now the control variable is incremented /decremented and the new value of
the control variable is again tested to see whether it satisfies the loop
condition

5. Process continues till the value of control variable fails the test-condition

for loopfor (n = 1; n <= 10; n ++)
{
 statements;
}

// Program to print sum of first 5 numbers
void main ()
{
int n, sum = 0;
for (n=1; n<=5; n++)

{
 sum = sum + n;

}
printf(“sum = %d”, sum);
} // end of main

for loop statement

Jump Statements

• goto: Is an unconditional control statement, to transfer control
of one program from one point to another
• Is a branching statement and require a label
• To identify the place where control must be transferred

• Label can be any variable name and to be followed by a colon

goto Statement

syntax
goto label;

Example:
goto END;
…..............
……………...
………………
END:

• Label can be anywhere in the program either before OR after goto statement
Forward jump
• If the label is placed after goto statement, some statement will be skipped
Backward jump
• If the label is placed before goto statement, a loop will be formed and some

statements will be executed repeatedly

goto Statement

break statement
Syntax: break;

• break statement is a jumping statement which allows control of
program to shift to another location
• break statement can be used to terminate a loop and exit from a

particular switch case label
• When used with any looping statements, control comes out of the

corresponding loop and continues with the next statement
• When used with a nested loop, control comes out of that loop only

not from the complete nesting

continue statement
Syntax: continue;

• continue statement is a jumping statement which allows control of
program to shift to another location
• Is used to skip certain statements inside a loop and to start next

iteration of loop
• i.e. The control does not come out of the loop, instead skips the

remaining statements and is transferred to the beginning of the
loop

Nested loops

Nested loops
§When one loop is placed inside the other, it is termed nested

loop
§ Inner and outer loops need not be of same type
§One loop must be completely inside the other, with no

overlapping
§Each loop must have different index variables

Nested loops
Nested for loop
For (n=1,n<10;n++)
{
 for (m=1;m<10;m++)

{
 statements;
}

}

Nested loops

*
* *
* * *
* * * *
* * * * *

1 2 3 4 5
1 *
2 * *
3 * * *
4 * * * *
5 * * * * *

j

i

1 2 3 4 5
1 *
2 * *
3 * * *
4 * * * *
5 * * * * *

§Outer loop – number of rows j

i

1 2 3 4 5
1 *
2 * *
3 * * *
4 * * * *
5 * * * * *

§Outer loop – number of rows j

i

1 2 3 4 5
1 *
2 * *
3 * * *
4 * * * *
5 * * * * *

§Outer loop – number of rows
§ Inner loop – number of ‘*’ in one row

j

i

1 2 3 4 5
1 *
2 * *
3 * * *
4 * * * *
5 * * * * *

§Outer loop – number of rows
§ Inner loop – number of ‘*’ in one row

j

i

1 2 3 4 5
1 *
2 * *
3 * * *
4 * * * *
5 * * * * *

§Outer loop – number of rows
§ Inner loop – number of ‘*’ in one row

j

ivoid main ()
{
int i,j;
for (i=1; i<=5; i++)
{
 for (j=1; j<=i; j++)
 {

printf(“*”);
 }
printf(“\n”);
}

i =1 , j loop – one *
i =2 , j loop – two **
i =3 , j loop – three ***

Nested loops

1
1 2
1 2 3
1 2 3 4
1 2 3 4 5

1 2 3 4 5
1 1
2 1 2
3 1 2 3
4 1 2 3 4
5 1 2 3 4 5

§Outer loop – number of rows
§ Inner loop – number of ‘*’ in one row

j

ivoid main ()
{
int i,j;
for (i=1; i<=5; i++)
{
 for (j=1; j<=i; j++)
 {

printf(“%d”,j);
 }
printf(“\n”);
}

i =1 , j loop – one *
i =2 , j loop – two **
i =3 , j loop – three ***

INPUT OUTPUT
FUNCTIONS

Input Output Functions

Input/Output function in C
ØVarious input/output functions are available in C language
ØThey are classified into two broad categories
1. Console Input/Output Functions – These functions receive

input from keyboard and write them on the VDU (Visual
Display Unit) - Monitor

2. File Input/Output Functions – These functions perform
input/output operations on a hard disk or other storage
devices

Console I/O functions further classified into
1. Formatted Input/Output Functions
2. Unformatted Input/Output Functions

Type Input function Output function
Formatted scanf() printf()
Unformatted getchar() putchar()

gets() puts()

Formatted I/O functions enable the user to specify the type of data, and
the way it should be read in or written out. This user specification is not
possible with unformatted I/O functions

Input/Output function in C

Input/Output function in C

Input function Output function Purpose

scanf() printf() Input & Output of single characters,
strings, numerical values

getchar() putchar() Input & Output of single characters
gets() puts() Input & Output of strings

getchar() & putchar()
getchar() function:
Reads a character from keyboard
Header file – <stdio.h>

Example:
main()
{

char letter;
letter = getchar ()

}char letter:
Declares that ‘letter’ is a character-type variable
letter = getchar ():
Reads a single character entered from the keyboard and assign to ‘letter’

putchar() function:
Prints a character on the screen
Header file – <stdio.h>

getchar() & putchar()
Example:
main()
{

char letter;
letter = getchar ();
putchar (letter);

}

getchar() & putchar()
• The getchar function can also be used to read multi-character strings, by

reading one character at a time within a loop
• The putchar function can be used with loops to output a string.

• The gets() function reads strings from keyboard until ENTER key is pressed
• The puts () function prints a string of characters on the screen

gets() & puts()

#include<stdio.h>
void main()
{

char message [20];
printf(“ Enter message:\n”);
gets(message);
puts(message);

}

printf() & scanf()
functions

scanf() function
• scanf() function can be used to enter any combination of numerical values

or characters or strings
Syntax

scanf(“control string”, arguments list);
scanf(“control string”, arg1, arg2, arg3);

Control string:
• Specifies the field format in which the data is to be entered
• It is a sequence of one or more character groups
• Starts with a % and followed by a conversion character indicating the

type of data
Arguments list:
• Specify the address of locations where the data is stored

scanf() function
scanf(“control string”, arg1, arg2, arg3);

control string
• Starts with a %
• Conversion character indicating

the type of data

% s - string

% d - integer

% f - floating point

scanf (“%d”, &number);

scanf() function
Example
main()
{

char a[20];
int b;
float c;
scanf (“ %s % d %f ”, a, &b, &c);

}

% s - string

% d - integer

% f - floating point

• Every variable name other
than an array must be
preceded by an ampersand
(&)

• It represents the memory
address

Common Format Specifiers

Common Format Specifiers

scanf() function
Field width can be specified

scanf(“%3d”, &number);

• Can input integer with 3 digits

scanf(“%3d, %5d”, &A, &B);

• First 3 consecutive digits will be assigned to A

• Next 5 consecutive digits will be assigned to B

• printf() function can be used to output numerical values, single characters
and strings

• printf () function moves data from the computer’s memory to the output
device

printf() function

Syntax
printf(“control string”, arguments list);

Example:
printf (“Hello World”);
printf (“%d”, number);
printf (“%f %d ”, x1, x2); when x1 is float type and x2 is interger
type
printf (“Sum of two numbers = %d”, sum);

printf() function
Syntax

printf(“control string”, arguments list);

a = 123.456 printf (“%f”, a); 123.456000

a = 123.456 printf (“%.3f”, a); 123.456

a = 123.456 printf (“%.1f”, a); 123.5

b = 678 printf (“%d”, b); 678

b = 678 printf (“%5d”, b); 678

b = 678 printf (“%05d”, b); 00678

printf() function

OPERATORS
EXPRESSIONS

•Operators & types
•Expressions
•Statements
•Precedence of operators

Contents

OPERATORS &
EXPRESSIONS

Operator: is a symbol that tells the compiler to perform specific
mathematical or logical functions

• Arithmetic Operators
• Unary operators
• Relational Operators
• Logical Operators
• Bitwise Operators
• Assignment Operators

OPERATORS

Arithmetic Operators
§ An arithmetic operator performs mathematical

operations on numerical values
§ The operands must be numerical values

•Operators that act upon a single operand to produce a
new value

1. ++ : Increment operator
• Increments the value of operand by 1
• A++ means A=A+1

2. -- : Decrement operator
• Decrements the value of operand by 1
• A-- means A=A-1

UNARY OPERATORS

UNARY OPERATORS

•Pre-fix increment ++A
•Pre-fix decrement - -A

•Post-fix increment A++
•Post-fix decrement A - -

UNARY OPERATORS
First the increment/decrement
action will be done and then the
value of operand (A) will be used

First the value of operand (A) will be
used and then the
increment/decrement action will be
done

Equality Operator

Relational Operators

Logical Operators

Relational & Logical Operators
• Statements which use relational or logical operations yield

either true or false as outcome
• Relational or logical operations return
• 0 for false
• 1 for true

int a=7
int b=5
float f = 6.5
char k =‘w’

Expression Interpretation Value

a < b false 0

f > 4 true 1

k ==119 true 1

k != ‘s’ true 1

(a+f) <= 10 false 0

Bitwise Operator
• All data items are stored in a computer memory as a sequence of bits

(0 and 1)
• There are several applications which need manipulation of these bits
• To perform this C provides six bitwise operations
• They work with int & char type
• Cannot work with float

Bitwise Operator - Results
Bitwise AND & :
• 1 if both bits are 1
•Otherwise 0

Bitwise OR | is:
• 1 if one of bits is 1
•Otherwise 0

Bitwise XOR ^:
• 1 if both bits are different
•Otherwise 0

Bitwise complement ~:
• Reverses state of each bit

Bitwise Operator
• Assume A = 60 and B = 13 in binary format, they will be as follows −
• A = 0011 1100
• B = 0000 1101

A 0 0 1 1 1 1 0 0
B 0 0 0 0 1 1 0 1

A&B 0 0 0 0 1 1 0 0

A|B 0 0 1 1 1 1 0 1

A^B 0 0 1 1 0 0 0 1

Bitwise Operator

A 0 0 1 1 1 1 0 0
~A 1 1 0 0 0 0 1 1

Bitwise complement ~ operator

Bitwise Operator
Left shift operator:
• Represented by <<
• Two operands, Eg: A<<2
• Bits of first operand will be shifted to left by number specified by

second operand

A 0 0 1 1 1 1 0 0

A<<2
1 1 1 1 0 0
1 1 1 1 0 0 0 0

Bitwise Operator
Right shift operator:
• Represented by >>
• Two operands, Eg: A>>2
• Bits of first operand will be shifted to right by number specified

by second operand

A 0 0 1 1 1 1 0 0

A>>2
0 0 1 1 1 1

0 0 0 0 1 1 1 1

Assignment Operator
• Assignment operators are used to assign value of an expression

to one or more identifiers
• Eg: x = y + 3;
• = Assignment operator

Assignment Operator

Conditional Operator
• Conditional operators are used to test the relationship between variables
• Used along with relational operators
• An expression that makes use of the conditional operator is called a

conditional expression
• Takes 3 inputs as operands. Evaluate 2nd or 3rd expression based on the first

conditional expression

<expression 1> ? < expression 2 > : < expression 3>

• Expression 1 is evaluated first
• If expression 1 is true, then expression 2 is evaluated
• If expression 1 is false, then expression 3 is evaluated

Conditional Operator

c = a<b ? < a > : < b>

Example:
a = 3
b=5

If a<b, c= a
If a>b, c=b

C = a = 3

sizeof Operator
• This operator returns the size of operand in number of bytes
• x = sizeof (sum)

Expressions
Expression:
• Is a sequence of operands and operators that reduces to

a single value
• It can be any valid combination of constants, variables or

other data elements
• x=y
• C=a+b

Statements
Statement:

• Is an instruction to computer to carryout some action

• Three different statements in C

1. Expression statements

2. Compound statements

3. Control statements

Statements
1. Expression Statement:

• Consists of an expression followed by a semicolon

• Eg:

• a=b+c;

• printf(“value of sum = %f”, sum);

• Include one or more operands and operator

• While executing the expression statement, the expression is

evaluated

Statements
2. Compound Statement:
• Consists of several individual statements enclosed within a

pair of curly braces {…}
• Eg:

{
int a=5;
float b=4.5;
float sum = a+b;
}

Statements
3. Control statements
• Are used to control the flow of execution of a program
• Logical tests, loops & branches are the main features provided

by control statements

Precedence of Operator
Precedence
• The operators in C are grouped in hierarchically as per their

precedence (order of evaluation)
• Operations with higher precedence are carried out before other

operations with lower precedence

Associativity
• The order in which consecutive operations within the same

precedence group are carried out is known as associativity

Precedence & Associativity

STRUCTURE OF C

The basic format of a C program:

Structure of C Program

Structure of C Program
Documentation section:
• Is the part of the program where the programmer gives the details associated

with the program
• Usually the name of the program, the details of the author, time of coding etc.
• These comment lines include the details the user would like to use later

/*File name: print hello
Date: 09/06/2021
Description: A program to display hello*/

Link
Documentation

Declaration

Execution

Structure of C Program
Link Section
• This part of the code is used to declare all the header files that will be used in the

program
• Link section provides instructions to compiler to link functions to system library
• Eg: #include<stdio.h> : For standard input & output functions

/* Program to print ‘Hello’*/

main ()
{
 printf (“ Hello”);
}

Structure of C Program
Link Section
• This part of the code is used to declare all the header files that will be used in the

program
• Link section provides instructions to compiler to link functions to system library
• Eg: #include<stdio.h> : For standard input & output functions

/* Program to print ‘Hello’*/
#include<stdio.h>
main ()
{
 printf (“ Hello”);
}

Link
Documentation

Declaration

Execution

Structure of C Program

Definition Section
Section which defines values of all symbolic constants
Eg: #define PI=3.14, #define X = 20

Structure of C Program
Global declaration Section

• There are some variables that are used in more than one function

• Such variables are called global variables

• These are declared in the global declaration section that is outside of all
the functions

• Global variables hold their values throughout the program and they can
be accessed inside any of the functions defined for the program

• This section also declares all the user-defined functions

• Eg: int age;

Structure of C Program
Main Function Section
• Every C-programs must have one main ()

function
• Execution of C program starts with main ()
• Contains two parts,

1. Declaration part
2. Executable part

• These two parts comes between set of
opening & closing curly braces

• Closing curly brace indicate end of function

main()
{
int a=10;
printf (" %d", a);
}

Declaration

Executable

Link
Documentation

Declaration

Execution

Structure of C Program
Sub Program Sections
• All the user-defined functions are

defined in this section of the
program

• User defined functions are generally
placed immediately after main
function, although they may appear
in any order

Structure of C Program

ARRAY

MODULE 3

ARRAY
Array is an ordered list of homogeneous data elements

that share a common name

ARRAY
Array is an ordered list of homogeneous data elements

that share a common name
• Eg: int number [5]
• number represents an array which can hold 5 elements
• All elements must be integer data-type (in this example)
• Computer reserves five storage locations:

number [0] -------- Indicate 1st element in the array
number [1] -------- Indicate 2nd element in the array
number [2] -------- Indicate 3rd element in the array
number [3] -------- Indicate 4th element in the array
number [4] -------- Indicate 5th element in the array

number [0]
number [1]
number [2]
number [3]
number [4]

ARRAY
§Each element in an array is referenced by a subscript OR index

enclosed in a pair of square brackets
§This subscript indicates the position of an individual element in an

array
Example: To store marks of 5 subjects in an array
(21.5,22.0,23.5,24.5,25.0)
float mark [5];
mark [0] = 21.5
mark [1] = 22.0
mark [2] = 23.5
mark [3] = 24.5
mark [4] = 25.0

Classification of Array
Arrays are classified into two types:
1. One dimensional arrays
2. Multi dimensional arrays
• Two-dimensional, Three-dimensional, ………. n-dimensional

array
• The dimensionality of an array is determined by the number of

subscripts present in an array
• If there is only one subscript it is called one dimensional array

• ARRAY []
• If there are two subscripts, then it is called two dimensional array

• ARRAY [][]

Declaration of Array
§An array must be declared before they are used in the program

Syntax for declaring one-dimensional array:

datatype Array_name[size];

Datatype: Type of element contained in array - int, float, char etc.

Size: Number of elements that can be stored in an array

Eg1: int age [20];
§ Declares age as an array to contain maximum of 20 integers

Declaration of Array
Eg2: char name [10];
§Declares name as a character array (string) to

contain maximum of 10 characters
§Reading string “WELL DONE” to array name
§Each character of the string is treated as an element

of array and stored as:

‘W’
‘E’
‘L’
‘L’
‘ ’
‘D’
‘O’
‘N’
‘E’
‘\0’

§A character string will be terminated with an
additional null character ‘\0’
§Hence while declaring character arrays, we must
allow one extra element space for null terminator

Declaration of Array
Rules for subscript:
1. Each subscript must be an unsigned positive

integer or expression
2. Subscript of subscript is not allowed
3. C does not perform bounds checking. Therefore

the maximum subscript appearing should not
exceed the declared

4. In C, subscript value ranges from 0 to (size - 1). i.e,
if the size is 10, first subscript is 0, second is 1
and last is 9.

Initialising One Dimensional
Array Initialising is the process of assigning value to a variable

§After array is declared, its elements can be initialised
§An array can be initialised at:
§Compile time & Run time

Compile time initialisation
datatype Array_name[size] = { List of values};
Eg: int number [5] = { 11, 12, 13, 14, 15};
§Number of elements initialised may be less than declared size.
§ In such cases, remaining elements will be initialised to zero
Run time initialisation
Can use read function scanf to initialise an array

One Dimensional Array
How to accept n integers and store them in an array
int n, i, number[20];
printf (“Enter the size of Array\n”);
scanf(“%d”,&n);
printf (“Enter the elements one by one\n”);
for(i=0, i<n; i++)
 {
 scanf(“%d”, &number[i]);
 }

One Dimensional Array
How to print n integers stored in an array

printf (“The elements in array is\n”);
for(i=0, i<n; i++)
 {
 printf(“ %d \n”, number[i]);
 }

11
12
13
14
15

Two Dimensional Array

Two Dimensional Array

§Two-dimensional array can be defined as an array of arrays
§The 2D array is organized as matrices which can be represented

as the collection of rows and columns
§Example above: marklist [4] [3]

Mark 1 Mark 2 Mark 3

Student 1 21 34 74

Student 2 38 87 74

Student 3 89 85 39

Student 4 44 53 85

2D Array Declaration
Two-dimensional arrays are declared as:
datatype arrayname [row_size] [column_size];
Example: int x [20][10];
2D arrays are stored in memory as shown:

2D Array Initialisation
• Two dimensional arrays can be initialised after declaration

• With list of initial values enclosed in braces

• The initialization is done row by row

Example:

int table [2][3]={0,0,0,1,1,1};

int table [2][3]={{0,0,0},{1,1,1}};

0 0 0

1 1 1

2D Array Initialisation
int matrix [3][3]={1,2,3,4,5,6,7,8,9};

matrix[0][0] = 1 matrix[0][1] = 2 matrix[0][2] = 3

matrix[1][0] = 4 matrix[1][1] = 5 matrix[1][2] = 6

matrix[2][0] = 7 matrix[2][1] = 8 matrix[2][2] = 9

1 2 3
4 5 6
7 8 9

If any values are missing during
initialisation process, they will be
automatically set to zero

/* Program to read elements to a matrix*/
int mat[10][10];
int row, col, i, j;
printf(“Enter order of matrix\n”);
scanf(“%d%d”, &row, &col);
printf(“Enter elements of matrix row-wise\n”);
for (i=0; i<row; i++)
{
 for (j=0; j<col; j++)
 {
 scanf(“%d”, & mat[i][j]);
 }
} Array Initialisation

0 1 2
0 21 34 74
1 38 87 74
2 89 85 39
3 44 53 85

row = 4, col = 3

/* Program to print elements of a matrix*/
int mat[10][10];
int row, col, i, j;
printf(“Enter order of matrix\n”);
scanf(“%d%d”, &row, &col);
printf(“The matrix is \n”);
for (i=0; i<row; i++)
{
 for (j=0; j<col; j++)
 {
 printf(“%4d”, mat[i][j]);
 }
printf(“\n”);
} Array Initialisation

0 1 2
0 21 34 74
1 38 87 74
2 89 85 39
3 44 53 85

row = 4, col = 3

Programs to write:
1. Program to read n numbers to an array and display the
same array.
2. Program to accept two arrays and find sum of their
corresponding elements.
3. Program to input n numbers to an array and display the
largest number.

4. Program to read and display a matrix.
5. Program to read a square matrix and to display its trance
and transpose
6. Program to read two matrices and find their sum.

STRING

STRINGS
• String is a sequence of characters that is treated as a single data

item
• One dimensional array of characters
• Eg: “computer” is a string stored as:

c o m p u t e r \0

• Each one dimensional character array ends with a null character \0
• printf(“WELL DONE”);
• Ouput string – WELL DONE

Declaration
• General form of declaration of a string variable:

char string_name [size];

• Size determines the number of characters in the string

• Example: char name[20];

• When compiler assigns a character string to an array it assigns a
null character \0 at end

• Hence the size should be equal to maximum required number of
the string plus one

Initialisation
• Character arrays may be initialised when they are declared

• Can be initialised in the following forms:

char msg [10] = “WELL DONE”;

char msg [10] = {‘W’, ‘E’, ‘L’, ‘L’, ‘ ’, ‘D’, ‘O’, ‘N’, E’, ‘\0’};

• 10 elements long: 9 characters + null terminator

Initialisation
• C also permits to initialise a character array without specifying

number of elements
• In such cases, size of array will be automatically determined based

on number of elements initialised
• Eg: char string[] = {‘G’, ’O’, ’O’, ’D’, ’\0’}; - declares as a five element

array
• Can also declare a size larger than string size
• Eg: char string [10] = “ GOOD”; – creates an array of size 10, places

“GOOD”, adds \0, initialise other elements as NULL

G O O D \0 \0 \0 \0 \0 \0

Reading & Writing Strings
Strings can be entered and displayed using following functions:

• scanf()
• gets()
• getchar()

• printf()
• puts()
• putchar()

Reading String
scanf function
scanf function can be used with %s format specifier

Example: char message[10];
scanf(“%s”, message);

• While using scanf for strings & is not required before variable
name

• scanf function terminates its input on the first white space (blank,
tab, newline etc.)

• Eg: If we enter “WELL DONE”, only “WELL” will be read to the
array address

Reading String
getchar function
• Can be used to read a single character
• Can be used repeatedly to read successive single characters

from input and place them in a character array
• Thus an entire line of text can be read and stored in an array
• No parameter required

char ch;
ch = getchar();

Reading String
getchar function
To enter a line of text

char line[30], ch;
 int i = 0;
printf("Enter line: ");
while(ch != '\n') // terminates entry with newline
{
ch = getchar();
line[i] = ch;
i++;
}
line[i] = '\0'; // inserting null character at end
printf("Line is: %s", line);

Reading String
gets function
• Another convenient method to input string with white spaces
• Reads characters from keyboard until a newline is encountered

and then adds a null character

char line [10];
gets (line);

Writing String
printf function
• %s format specifier to be used
• printf(“%s”, name);
putchar function
• To output values of character variables
• putchar (ch) ----------- requires one parameter
puts function
• char line [10];
• gets (line);
• puts (line);

/*Program to enter a string and count number of characters*/
void main ()
{
char text[20];
int count =0, i;
printf("Enter the text\n");
gets(text);

while (text[count]!='\0') // Counting from index 0 till character before \0
{
count++; // increment count number if character is not \0
}
printf("%d",count);

Index ch count
0 G 1
1 O 2
2 O 3
3 D 4
4 \0

Arithmetic Operations on
Characters

• Each character constant has an ASCII value
• Whenever a character is used in an expression, its ASCII value is

accessed
Example:
ASCII value of character A is 65
• Can print the integer representation of a given character constant

using printf

char ch = ‘A’;
printf(“ The character is: %c\n”,ch); -------- A
printf(“ The ASCII value is: %d\n”,ch); ------ 65

Arithmetic Operations on
Characters

int y, x = 10;
y = x+’a’; //10+97
printf(“y = %d\n”,y);

To check upper case or lower case
char ch;
ch>=‘A’ && ch<=‘Z’ ch>=65 && ch<=90
ch>=‘a’ && ch<=‘z’ ch>=97 && ch<=122

String Handling Functions

String Handling Functions
• String handling functions to manipulate the strings according

to the need of problem
• Are defined under string.h header file
• The commonly used string handling functions are:

Function Action
strcat() Concatenates (join) two strings
strcmp() Compares two strings
strcpy() Copies one string over another
strlen() Finds length of a string

strcat() Function
strcat function joins two strings together
Syntax: strcat (string1, string2);
• When this function is executed, string2 will be added to string1
• Done by removing the null character at the end of string1 and

placing string2 from that location
• Text in string2 will remain unchanged
• Size of string1 must be large enough to accommodate final string

strcat() Function
strcat function joins two strings together

Syntax: strcat (string1, string2);

• Function can also join a string constant to a string variable

• strcat(string1, “GOOD”);

• Nesting of strcat functions is also possible

• strcat((strcat(string1, string2), string3)

strcmp() Function
• strcmp function compares the strings in arguments
• Stntax: strcmp(string1, string2);
• If are equal give value 0
• If not equal give the numeric difference between first non-

matching character
• string1 & string2 may represent string variables or string

constants
• strcmp(text1, text2);
• strcmp(text1, “good”);
• strcmp(“well”, “done”);

strcmp() Function
• strcmp function compares the strings in arguments
• Stntax: strcmp(string1, string2);
• Example:
• strcmp(“there”, “there”); ------- return value 0
• strcmp (“their”, “there”); -------return -9, ASCII value difference

between “i” and”r”
• If the return value is negative, string1 is alphabetically above

string2

strcpy() Function
• strcpy is a string assignment operator
• Stntax: strcpy (string1, string2);
• Assigns contents of string2 to string1
• string1 & string2 may represent string variables or string

constants
• Sixe of string1 should be large enough to copy contents of

string2

strlen() Function
• strlen function counts and returns number of characters in a

string
• N= strlen (string);
• N is an integer variable, will be assigned with length of string
• Counting ends at the first null character
• Example: strlen (“well done”) ---------- 9

strstr() Function
• strstr function locates a substring in a string
• Syntax: strstr (s1,s2);
• Searches string s1 to check whether s2 is contained in it
• If yes, will return location of first occurrence
• If no, will return null pointer
• Example:
if(strstr(s1,s2) == null)

printf(“substring is not found”);
else

printf(“s2 is a substring of s1”);

Other string handling
functions

• strncat (s1, s2, n) joins first n characters of s2 to the end of s1

• strncpy (s1, s2, n) ---- copies first n characters of s2 into s1

• Null character(\0) should be supplied at the end

• strncmp (s1, s2, n) compares leftmost n characters of s1 to s2

• Return 0 if equal, -ve if s1 substring is less than s2

FUNCTION IN
C

MODULE 4

Contents
1. Modular programming
2. Functions
3. Recursion
4. Structure
5. Union
6. Storage classes

Modular Programming

•Organising a large program into small & independent
program segments called modules

• Each module is separately named and are individual
units

Modular Programming is the process of subdividing
a computer program into separate sub-programs

Functions

Function is a self-contained program segment that carries
out some specific, well-defined task

C functions classifications
1. Library functions
2. User-defined functions

Library Functions
• Each library function performs a predefined operation

• Example: strcat, sqrt, printf, scanf, getchar, strcat, sqrt

• These library functions are created at the time of designing the

compilers

User-defined functions
• These are written by the programmer for carrying out certain

tasks
Elements of user-defined function
1. Function declaration
2. Function call
3. Function definition

Need of Functions
§Large and difficult program can be divided in to sub

programs and solved

§Task which has to be performed repeatedly at different
locations in a program

§Function avoids this repetition or rewriting over and
over

Function Elements
In 'C' programming functions are divided into three

components :

1. Function definition

2. Function call

3. Function declaration

1. Function Declaration
§Function declaration means: we specify the name of a

function (the sub-program) that we are going to use in the
program - like a variable declaration

•All functions in a C program must be declared, before they
are called
§A function declaration is also called “Function Prototype”

1. Function Declaration

Function declaration (function prototype) consists of four
parts:
1. Function type (return type): data type of the value function

returned back to the calling function
2. Function name
3. Parameter list
4. Terminating semicolon

Format of function declaration:
Return-datatype Function-name (Parameter list) ;

1. Function Declaration

1. Function Declaration
Examples of function declaration

§int add (int a, int b);

§int add (int, int);

§add (int, int);

§void add (int, int);

1. Function Declaration
Parameter list:

1. Parameter list must be separated by commas

2. The type of parameter must be same in the function definition, in
number and order

3. If the function has no formal parameters, the list is written as void

4. The return type must be void if no value is returned

5. The return type is optional, when the function returns int type
data

2. Function Call
• A function call means calling a function when it is required

in a program

• When a function is called, it performs an operation for
which it was designed

• Example: add(4,5);

2. Function Call
• A function is called by using the function name followed by list of

parameters (or arguments)
Example:
main ()
{
int s;
s = add (3,5); ---------- function call (sends two values 3 & 5 to function)
printf(“ sum = %d”, s);
}

3. Function Definition

•Writing the body of a function
•A body of a function consists of statements which perform

the specific task
•A function body consists of a single or a block of

statements

3. Function Definition
• Function definition is the independent program module

written to implement one particular task
• Also called function implementation
• Include components:
1. Function name
2. Function type
3. List of parameters
4. Local variable declaration
5. Function statements
6. A return statement

Function header

Function body

3. Function Definition
Example: function to find sum of 2 numbers
int add (int a, int b) ----------- Header
{
int c;
c = a + b;
return (c);
}

Function body

3. Function Definition
Function Header
1. Function name - Any valid C identifier
2. Function type
• Specifies the data-type of the value the function is expected to

return
• If not specified, compiler will assume integer data type
• If not returning any value, specify return type as void

3. Function Definition
Function Header
3. Parameter list
• Declares the variables which receive the data sent by the calling

program
• List contains declaration of variables separated by commas
• Example: int add (int a, int b)

• No semi-colon after parenthesis
• Cannot combine datatype (int a, b) -----wrong

3. Function Definition
Function Body
Function body contains all the declarations and statements for
performing the required task
3 components:
1. Local variable declaration ---- specifies variables needed
2. Executable statements ------- to perform task
3. Return statement -------- returns value evaluated by function

• Function may nor may not return value to calling function. If it does,
value is returned through return statement

3. Function Definition
Return statement
• Returns value evaluated by function
• Function may nor may not return value to calling function
• If it does, value is returned through return statement
• Return statement can be in following forms:
1. return; ----------- does not return any value, the control is

immediately passed back to the calling function
2. return (expression); ---------- returns the value of the

expression

#include <stdio.h>
#include <conio.h>
void add (int a, int b); //function declaration
void main()
{
 int a = 10, b = 20;
 add(10,20); //function call
}
void add (int a, int b) //function
{
int c;
c = a + b;
printf (“SUM = %d\n",c);
}

Function -
Example

main ()
{
 int s;
 s = sum (3, 5);
 …..
}

int sum (int x, int y)
{
 int result; /* local variable
 result = x + y; /* x= 3, y=5
 return (result);
 }

Main function

User defined function

Parameters
Actual Parameter :
• The actual value/expression that is passed into the function by a

caller
• The variable or expression corresponding to a formal parameter

that appears in the function call
Formal Parameter :
§A variable and its type as they appear in the function definition or

prototype
§The identifier used in a function to stand for the value that is

passed into the function by a caller

main ()
{
 int s;
 s = sum (3, 5);
 …..
}

int sum (int x, int y)
{
 int result; /* local variable
 result = x + y; /* x= 3, y=5
 return (result);
 }

Formal Parameter

Actual Parameter

Main function

User defined function

Category of Functions
Functions can be categorised into:

1. With no arguments and no return value

2. With arguments but no return value

3. With no arguments but a return value

4. Function with arguments and return values

Category of Functions
1. Functions with no arguments and no return value
• Example: void name (); OR void name (void)

• The called function does not receive any data from the calling
function

• Function does not return any value back to the calling function

• Hence no data transfer between calling function and called function

• The function can be defined with empty parameter list
• An empty parameter list may be specified by writing either void or

nothing in the parenthesis of function definition.

/* function with no argument and no return value*/
#include<stdio.h>
#include<conio.h>
void printline(); // function declaration
void main ()
{ printf(“Function is easy to learn”);
 printline(); // function call
 getch(); }
void printline()
{
int i;
printf(“\n”);
for (i=0;i<30;i++)
{
 printf(“ – “); }
}

Function is easy to learn--------------------------------

Category of Functions
2. Functions with arguments but no return value
• Function receives data from calling function

• Called function does not return any value back to the calling
function

• One-way data communication between calling function and called
function

/* function with argument and no return value*/
#include<stdio.h>
void main()
{
 void max (int, int);
 int x,y;
 printf("Enter the value of x and y\n");
 scanf("%d%d", &x,&y);
 max(x,y); ------------------------- Function call
}
void max (int p,int q) --------------- Function
{
 if(p>q)
 printf("max = %d",p);
 else
 printf("max = %d",q);
}

OUTPUT
Enter the value of x and y
 3 5
max = 5

Category of Functions
3. Functions with no arguments but a return value
• Function does not receive any data from calling function

• Uses local data to perform task

• After processing the computed data will be returned to calling
function

• One-way data communication between calling function and called
function

/* function with no argument but return value*/
#include<stdio.h>
void main()
{
 float add (); -------------Function declaration
 float sum;
 sum = add (); ----------- Function call
 printf("Sum = %.2f", sum);
}
float add () -------------------------- Function
{
 float x, y, s;
 x=20.8;
 y=50.9;
 s=x+y;
return (s);
}

OUTPUT
Sum = 71.7

Category of Functions
4. Functions with arguments and return value
• Function receives data from the calling function through arguments
• Function returns value to calling function

/* Function to add two numbers*/
#include<stdio.h>
void main()
{
 int a, b, sum;
 int add (int, int);
 printf("Enter the numbers\n");
 scanf("%d%d",&a, &b);
 sum = add(a,b); ---------------------------- Function call
 printf("Sum = %d",sum);
}
int add (int n1, int n2) -------------------------- Function
{
 int result;
 result = n1+n2;
 return(result);
}

OUTPUT
Enter the numbers
 3 5
Sum = 8

• While using functions, arguments are passed to the functions and
their values are copied to the function
• This is information exchange between calling function and called

function
• This process of transmitting values from one function to other is

called parameter passing
• There are 2 methods of parameter passing:
1. Pass by value (Call by value)
2. Pass by reference (Call by reference)

Parameter Passing Methods

Parameter Passing Methods
CALL BY VALUE CALL BY REFERENCE

1
While calling a function, values of
actual parameters are passed to
function

While calling a function, instead of passing the
values of variables, address of variables(location
of variables) are passed to function

2

The value of each variable in
calling function is copied into
corresponding dummy variables of
the called function

In this method, the address of actual variables in
the calling function are copied into the dummy
variables of the called function

3

The changes made to the dummy
variables in the called function
have no effect on the values of
actual variables in the calling
function

Any modifications made to the values in the
called function, original values will get changed
with in calling function

/* pass by value*/
void main()
{
 void pass_value (int, int);
 int n1, n2;
 n1 = 5;
 n2 = 10;
 pass_value(n1, n2);
 printf(" n1=%d, n2=%d\n",n1, n2);
}
void pass_value(int a, int b)
{
 a=a+2;
 b = b+2;
 printf(" a=%d, b=%d\n", a,b);
}

a = 7, b = 12

n1 = 5, n2 = 10

• In ‘C’ Recursion is the programming technique by which a
function calls itself

• i.e., the function is repeated

• Recursive functions can be effectively used to solve problems
where solution is expressed in terms of successively applying
the same solution to subsets of the problem

• While using recursion, programmers need to be careful to
define an exit condition from the function, otherwise it will
go in infinite loop

Recursion

Recursion

/* Function to find factorial of a number*/
int factorial (int N)
{
 int fact;
 if (N==1)
 return (1);
 else
 fact = N x factorial (n-1);
 return (fact);
}

Recursion - Example
To find factorial of 3, N=3
fact = 3 * factorial (2)
 = 3 * 2 * factorial (1)
 = 3 * 2 * 1
 = 6

Passing Arrays to Functions
1 D Arrays

To pass one dimensional array:

Example: Function to find average of array list with size N

 : Assume parameters as array and its size

Passing Arrays to Functions

Function declaration float average (float [], int);

Function call average (list, N);

Function definition float average (float arr[], int N)

• When an array is passed to a function, the values of the array
elements are not passed to the function. Rather, the array
name is interpreted as the address of the first array element

• This address is assigned to the corresponding formal argument
when the function is called

• Arguments that are passed in this manner are said to be
passed by reference

• Hence, any change in the array in the called function will result
in change in the original array

Passing Arrays to Functions

main ()
{
float largest (float list [], int N); --------------- declaration
float list [4] = {2, 3, 4, 5};
printf(“largest number = %f “, largest(list, 4))
}
float largest (float list [], int N) ----------------- definition
{
………..
…………
}

Passing Arrays to Functions -
Example

Passing Arrays to Functions
2 D Arrays

• Function can be called by passing only the array name

• In the function definition, should indicate that array has two

dimensions, by including two sets of brackets

• The size of second dimension must be specified

• Prototype declaration should be similar to function header

Passing 2D Arrays to
Functions

Passing 2D Arrays to
Functions

Function declaration int average (int [] [N], int, int);

Function call average (mat, M, N);

Function definition int average (int mat[] [N], int M, int N)

To pass two dimensional array:

Example:

STRUCTURES IN C

STRUCTURE
• Variables are used to store a single value of any data type

• Arrays are used to store a group of homogeneous elements

• To store and process a group of heterogeneous elements, C provide
a datatype called structure

• Example:

• Student details: Name, Roll no., Mark

• Name is a character array, roll no. is an integer and mark is a
float

STRUCTURE
• A structure is a collection of data items of different types

• Structure collects all the elements under a single name

• Each item in the structure is called as member

• ‘struct’ keyword is used to create a structure

• All the members can be grouped together in one structure using
keyword struct

STRUCTURE: DECLARATION
Syntax:

struct name
{
 datatype1 member1;
 datatype2 member2;
 …
 …
};

struct student
{
 char name [20];
 int roll_no.;
 char branch [10];
 float total_mark;
};

struct employee
{
 char name [20];
 int employee_code;
 float salary;
};

STRUCTURE: DECLARATION
Syntax:

struct name
{
 datatype1 member1;
 datatype2 member2;
 …
 …
} ;

In defining a structure note the following:

• Is terminated with a semicolon

• While the entire definition is considered as a
statement, each member is declared independently
for its name and type in a separate statement
inside the template

DECLARING STRUCTURE
VARIABLES

• Like ordinary variables, structure variables can be defined and
declared

• Structure variable declaration includes the following elements:

1. The keyword struct

2. The structure name

3. List of variable names separated by commas

4. Terminating semicolon

DECLARING STRUCTURE
VARIABLESMethod 1 :

struct student
{
 char name [20];
 int roll_no.;
 char branch [10];
 float total_mark;
};
void main()
{
struct student st1, st2, s[10];
}

Here, st1 & st2 are structure variables having four fields for student
Similarly, s[0], s[1],…s[9]

int a, b, c;
struct student st1, st2, s[10];

DECLARING STRUCTURE
VARIABLES

Method 2:
struct student
{
 char name [20];
 int roll_no.;
 char branch [10];
 float total_mark;
} st1, st2, s[10];

Here, st1 & st2 are structure variables having four fields for student
Similarly, s[0], s[1],…s[9]

DECLARING STRUCTURE
VARIABLESMethod 1 :

struct student
{
 char name [20];
 int roll_no.;
 char branch [10];
 float total_mark;
};
void main()
{
struct student st1, st2;
}

Here, st1 & st2 are structure variables having four fields for student

Method 2:
struct student
{
 char name [20];
 int roll_no.;
 char branch [10];
 float total_mark;
} st1, st2;

STRUCTURE -
INITIALISATION• A structure variable can also be initialized in the way as any

other data type in C
struct student
{
 char name [20];
 int roll_no.;
 char branch [10];
 float total_mark;
} st1 = {“abc”, 10, “civil”, 400};
OR struct student st1 = { “abc”, 10, “Civil”, 400} ;

Structure: Student 1
name abc
roll_no 10
branch Civil
total_mark 400

ACCESSING A STRUCTURE
• Each member of the structure is accessed with the dot operator (.)

• To access a particular member, dot operator must be placed
between the name of structure and name of structure member

struct student
{
 char name [20];
 int roll_no.;
 char branch [10];
 float total_mark;
} st1, st2;

Example:
st1.name
st2.name
st1.roll_no.
st2.roll_no

void main()
{
 struct book
 {
 int num;
 char author[20];
 float price;
};
 struct book b1;
 printf("Enter the book number\n");
 scanf("%d",&b1.num);
 printf("Enter the name of author\n");
 scanf("%s",b1.author);
 printf("Enter the price of book\n");
 scanf("%f",&b1.price);
 printf(“\n Book no. :%d",b1.num);
 printf(“\n Author :%s\n",b1.author);
 printf(“\nPrice :%f\n",b1.price);
}

ARRAY OF STRUCTURES
§An array of structures in C can be defined as the collection of

multiple structure variables where each variable contains
information about different entities

§The array of structures can be considered as a collection of
structures

§Consider the case, where we need to store the data of 10
students

ARRAY OF STRUCTURES
struct student
{
 char name [20];
 int roll_no.;
 char branch [10];
 float total_mark;
} s[10];

PASSING STRUCTURES TO
FUNCTIONS

• Structures can be passed as an argument to a function

Method 1

• Individual elements of structures can be passed to functions as
actual arguments

Method 2

• Entire structure can be passed by passing a copy to the function

Method 3

• Concept of pointers can be used to pass the structure

Method
1

/* structure passed to function: method 1, passing individual elements*/
void main()
{
 void output (int, char[], float); // function declaration
 struct book // structure declaration
 {
 int number;
 char author [10];
 float price;
 } b1 = {11, “abc",100}; // structure variable declaration
output (b1.number, b1.author, b1.price); //passing variables
}
void output (int n, char a[],float p)
{ printf("%d %s %f", n, a, p);
}

Method
2

void main()
{
struct emp // structure declaration
 {
 char name[10];
 int id;
 float salary;
 }e1;
 void display (struct emp); // function declaration
 printf("Enter name, id and salary of employee1\n");
 scanf("%s %d %f",e1.name, &e1.id, &e1.salary);
 display (e1);
}
void display(struct emp e1)
{
 printf("Employee name: %s", e1.name);
 printf("Employee id: %d", e1.id);
 printf("Employee salary: %f",e1.salary);
}

UNION

UNION
• Union is also a collection of heterogeneous items
• Union is a concept similar to structure and follow the same syntax

as structure
• But differ from structure in terms of storage
• In structures, each member has its own storage location,

whereas all the members of a union use the same location
• A union can store only one member at a time
• Unions, hence can be used to save memory, as only one of its

members can be accessed at a time

UNION
Syntax:

union union_name
{
 datatype1 member1;
 datatype2 member2;
 …
 …
};

Example:
union data
{
 int i;
 float f;
 char str[20];
};
void main ()
{
union data data1, data2;
}

UNION
• When a union is created, the compiler allocates a storage space

that is large enough to hold the largest variable type in the union
union data
{
 int i;
 float f;
 char c;
};
• This declares a variable code of type union data. The union contains

three members, each with different data type
• However, we can use only one of them at a time

• In this case, float requires more space than
others (4 bytes) Hence four bytes is allocated to
union data.

• We can store either an integer, a float or a
character at any one time, but not all of them
together.

#include<stdio.h>
#include<conio.h>
void main()
{
union number // union declaration
 {
 int n;
 char c;
 float f;
 };
 union number x; // variable declaration
 x.n = 11;
 x.c = 's';
 x.f = 1.1;
printf("Value of n = %d\n",x.n);
printf("value of c = %c\n",x.c);
printf("value of f = %.1f\n",x.f);
}

STORAGE CLASS

STORAGE CLASS
In C language, each variable has a storage class which decides
the following things:

• Scope – over what region of a program the value of variable
would be available

• Default initial value - if we do not explicitly initialize that
variable, what will be its default initial value

• Lifetime of that variable - for how long will that variable
exist

STORAGE CLASS
The following variable storage classes are most relevant to
functions:
1. Automatic Variables
2. External or Global Variables
3. Static Variables
4. Register Variables

AUTOMATIC VARIABLES
§Automatic variables are declared inside a function in which they are

to be utilized

§They are created when the function is called and destroyed
automatically when the function is exited, hence the name
automatic

§ Automatic variables are therefore private or local to the function in
which they are declared

§Since these are local to a function, are also referred to as local or
internal variables

AUTOMATIC VARIABLES
§We may also use keyword auto to declare automatic variables
§Eg: auto int number
• A variable declared inside a function without storage class

specification is, by default, an automatic variable

Scope: Variable defined with auto storage class are local to the
function block inside which they are defined
Life time: Till the end of the function block where the variable is
defined

Example: Automatic
variable

void main()

{

int a=10, b=5;

int s = a + b;

} // a,b,s are variables declared in main function – automatic
variables, local variables in main function

EXTERNAL VARIABLES
§External variables are those which are both alive and active

throughout the entire program

• They are also known as global variables

• Global variables can be accessed by any function in the
program

• External variables are declared outside a function

Example: External
variable

• a is a global variable
available to all functions

• s is a variable local to main
function

#include<stdio.h>
int a=10;
void main()
{
 void display (void);
 clrscr();
 int s = a+10;
 printf("s = %d\n",s);
 display();
}
void display(void)
{
printf("a from function named display = %d", a);
}

STATIC VARIABLES
• The value of static variables persists until the end of the program
• A variable can be declared static using the keyword static
• Eg: static int x; static float y;
• A static variable can either be internal or external depending

upon the place of declaration.
–Scope of internal static variable remains inside the function in
which it is defined
–Scope of external static variables remain restricted to the scope
of file in which they are declared

Example: Static
variable

void add(void)
main ()
{ int i;
 for (i=1;i<=3;i++)
 add();
}
void add()
{
static int x = 1;
printf (“%d\n”,x);
x++;
}

output
x=1
x=2
x=3

REGISTER VARIABLES
• Register variables inform the compiler to store the variable in CPU

register instead of memory
• Register variables have faster accessibility than a normal variable
• If frequently used variables are kept in register – will lead to faster

execution
• But only a few variables can be placed inside registers
• One application of register storage class can be in using loops,

where the variable gets used a number of times in the program,
in a very short span of time

Syntax :
• register int number;

REGISTER VARIABLES
• Since only a few variables can be places in the register, it is

important to carefully select register variables

• However, C will automatically convert register variables into non
register variable once limit is reached

FILE OPERATIONS

FILE

A file is a space in a memory where data is stored.
1. Text files
2. Binary files

FILE management in C
§All files should be declared as FILE datatype

§To process a file, it should be opened

§Once opened – the data in the file can be read, added, or
fresh data can be written

§While opening the file ---- the purpose also must be
specified

§For reading, writing or appending

OPENING A FILE
General format for declaring and opening a file:

FILE *fp;

fp = fopen(“filename”, “mode”);

§1st statement: declares variable fp as a pointer to datatype FILE

§2nd statement:

§Opens a file named filename and assigns to FILE type pointer fp

§ Specifies the purpose of opening this file

OPENING A FILE
General format for declaring and opening a file:

FILE *fp;

fp = fopen(“filename”, “mode”);

FILE *p1, *p2;
p1 = fopen(“input”, “w”);
p2 = fopen(“output”, “r”);

OPENING A FILE – File
mode

r
§ Open an existing file for reading only.
§ If the file does not exists, an error occurs.
§ If the file exists, it will be opened with current contents safe.

w

§ Open file for writing only.
§ If the file does not exists, a file with the specified name will

be created.
§ If the file exists, the contents will be deleted

a

§ Open file for adding data to it.
§ If the file does not exist, a file with the specified name will be

created.
§ If the file exists, it will be opened with current contents safe.

OPENING A FILE – File
mode

r+ § Open an existing file for reading and writing.
w+ § Creates a file for reading and writing. Erases file if existing

a+ § Opens an existing file for reading and appending. Creates
file, if does not exist

rb § Open a binary file for reading

wb § Create a binary file for Writing

ab § Append to a binary file

CLOSING A FILE
§A file must be closed when all operations on it are

completed

§Format of closing a file:
fclose(file pointer);

Example:
FILE *p;
p = fopen(“output”, “r”);
fclose (p);

CLOSING A FILE
§Failure to close files may result in corrupted files and loss

of data

§fcloseall() ------To close a number of open file at a time

Input – Output
operations on files

Input – Output Operations

Input – Output Operations
Different classes of read-write systems:

1. One character at a time

2. One integer at a time

3. One line of statement at a time

4. One block of statements at a time

5. Assorted types of data at a time

getc – putc functions
•Can handle only one character at a time

Format:

ch = getc(fx) ------- read a character from file pointed by fx

and assign to ch

putc (ch, fy) -------- writes the character stored in variable

ch to file pointed by fy

Program to read from file using
getc and write it to console screen

void main()

{

char ch;

 FILE *fx;

fx = fopen("cfile.txt", "r");

printf("Line of text written in file is:\n");

while ((ch = getc(fx))!=EOF)

printf("%c", ch);

fclose(fx);

}

void main()

{

 char ch;

 FILE *fx;

 fx = fopen("cfile.txt", "w"); //opening file

 printf("Enter the line of text: \n"); // Entering string through console

 while ((ch = getchar()) != '\n') // input character until new line

 putc (ch, fx); // adding the character in to the file

 fclose(fx);

}

void main()
{
 char ch;
 FILE *fx;
 fx = fopen("cfile.txt", "w"); //opening file
 printf("Enter the line of text: \n"); // Entering string through console
 while ((ch = getchar()) != '\n') // input character until new line
 putc (ch, fx); // adding the character in to the file
 fclose(fx);
fx = fopen("cfile.txt", "r");
printf("Line of text written in file is:\n");
while ((s = getc(fx))!= EOF)
printf("%c", s); // getting from file
fclose(fx);
}

getw – putw functions
• To read and write integer values

Format:

n = getw(fx) ------- reads an integer from file pointed by fx and

assign to n

putw (n, fy) -------- writes the integer stored in variable n to

file pointed by fy

fgets – fputs function
To read and write strings to files

Format:

fgets (str, size, fx) ------- read characters up to length ‘size’

from file pointed by fx and assign to string variable str

fputs (str, fy) -------- writes the contents of string variable

str to file pointed by fy

void main()
{
 char str[50], strnew[50];
 FILE *fx;
 fx = fopen(“data.txt", "w");
 printf("Enter the string: \n"); // Entering string through console
 gets (str); // reading string
 fputs(str,fx); // adding string to file
 fclose(fx); */
 fx = fopen(“data.txt", "r");
 printf(" Cntents of file:\n");
 fgets(strnew, 20, fx); // reading string from file
 fclose(fx);
 puts(strnew);
}

fprintf – fscanf files
§Can handle a group of data

fprintf (fp, “control string”, variable list);

§fp: The file pointer for the file opened for writing

§Control string: Format specifiers for items in the list

§List: may include variables, constants and strings

fprintf(fx, “ %s %d %f ”, name, rollno., 10.5);

fscanf (fp, “control string”, & variable list);

void main()
{
char name[10];
 int num;
 FILE *fx;
 fx = fopen("new.txt", "w");
printf("Enter name and number: \n");
scanf("%s %d", name, &num);
fprintf (fx, "%s %d", name, num); // writing to file
fclose(fx); */
 fx = fopen("new.txt", "r");
 printf(" Cntents of file:\n");
 fscanf(fx,"%s %d",name, &num); // reading from file
 printf("%s %d", name, num);
 fclose(fx);
}

Appending to a file
§Process of adding new data to a file
§Appending mode:

a

§ Open file for adding data to it.
§ If the file does not exists, a file with the specified name will

be created.
§ If the file exists, it will be opened with current contents safe.

a+ § Opens an existing file for reading and appending. Creates file,
if does not exist.

§When a file is opened in Append(a) mode, the cursor is
positioned at the end of the present data in the file

void main()
{
char ch;
 FILE *fx;
 fx = fopen("c1.txt", "a");
 printf("Enter the line of text: \n");

 while ((ch = getchar())!='\n')
 putc (ch, fx);
 fclose(fx);

fx = fopen("c1.txt", "r");
printf("Line of text written in file is:\n");
while ((c = fgetc(fx))!=EOF)
printf("%c", c);
fclose(fx);
}

Sequential and Random
Access of Files

Sequential And Random
Access

Sequential access: computer system reads or write
information sequentially, starting from beginning of the
file and proceeding step by step towards the end
Random access: computer system can read or write
information anywhere in the data file. Can be accessed
with:
1. rewind()
2. ftell()
3. fseek()

rewind()
rewind () function: Resets the file position indicator to
the beginning of the file

Whenever a file is opened for reading or writing rewind is
done automatically

Format: rewind (fx) ----fx is the file pointer

void main()
{
char c, ch;
FILE *fx;
fx = fopen("f1.txt", "r"); // opening file to read
printf("Line of text written in file data is:\n");
while ((c = getc(fx))!=EOF) // reading each character
printf("%c",c);
rewind(fx); // moving position to beginning
while ((ch = getc(fx))!=EOF)
printf("%c",ch);
}

rewind()

fseek()
fseek() function is used to move the file position to a
desired location within the file

fseek (file_pointer, offset, position)

file_pointer: Pointer to the file specified

Offset:
Number of bytes to be moved. If offset is prefixed
with a negative sign, it means that pointer needs
to be moved in the backward direction

Position: Start position for moving

fseek()

Position can take up following three values:

Value Meaning
SEEK_SET or 0 Beginning of file
SEEK_CUR or 1 Current position
SEEK_END or 2 End of file

fseek (file_pointer, offset, position)

fseek()

ftell ()
§ftell() function returns the current position of file position

indicator relative to the beginning of file

§Will return the number of bytes from the beginning of the

file

§n = ftell(fx) ------- n will give the current position relative to

the beginning

Format: ftell(fx) ----fx is the file pointer

ftell ()
§n = ftell() ------ means n bytes are already written or read

§ftell() function is useful in saving the current position of

file which can be used later in program

void main()
{
FILE *fx;
 int n1, n2, n3;
 char ch;
 fx = fopen("f1.txt","r"); // opening file to read
 n1 = ftell(fx); // while opening position at start, n1 = 0
 printf("n1 = %d\n", n1);
 printf("Content in file:");
 while((ch = getc(fx))!=EOF) // reading each character
 printf("%c", ch);
 n2 = ftell(fx); // after reading position reaches end, n2 = 8
 printf("\nn2 = %d", n2);
 fseek(fx, -3, 1); // moving
 n3 = ftell(fx);
 printf("\nn3 = %d", n3);
}

fseek() &
ftell()

feof()
feof(): Function is used to locate the end of a file while
reading the data.
•Return value:
• Zero --- when position indicator is not at end of file
• Non-zero ---- when end of file is reached

• fread and fwrite -- Used to read and write an entire block of data
to and from a file
• These functions require 4 arguments:

fread - fwrite
fread(ptr, int size, int n, FILE *fp);
fwrite(ptr, int size, int n, FILE *fp);

• These functions require 4 arguments:
1. ptr : ptr is the reference of where data will be stored

after reading
2. Size: Total number of bytes to be read from file (size of

block)
3. N: Number of times the data block to be read
4. fp: Pointer to file where the records will be read

fread ()
fread(ptr, int size, int n, FILE *fp);

fread ()
Read integer value from file

• Will read contents from file and store in variable s
Read array from file

FILE *fx
int a[10]
fread (a, sizeof(a), 1, fx);

• Would read an array of 10 integers from the file and stores in variable a

FILE *fx
fread (&s, sizeof(int), 1, fx);

fread ()
Read first n elements of an array

FILE *fx
int a[10]
fread (a, sizeof(int), 5, fx);

• Would read first 5 integers from the file and stores in variable a

fread ()
Read a structure variable
struct student
 {
 char name[10];
 int roll;
 float marks;
};
struct student student1;
 fread(&student1, sizeof(student1), 1, fp);

• These functions require 4 arguments:
1. ptr : reference of an array or a structure stored in

memory
2. Size: total number of bytes to be written
3. N: Number of times the data block to be written
4. fp: Pointer to file where the records will be written

fwrite ()
fwrite(ptr, int size, int n, FILE *fp);

fwrite ()
fwrite (&s, sizeof(int), 1, fx);

• Would write contents of int type variable s to the file pointed by fx

fwrite (arr, sizeof(int), 5, fx);

• Would write the first five elements of array, arr, to the file pointed
by fx

int i, a[10], b[10];
 FILE *fx;
 fx = fopen("sample.txt","w"); // opening file to write
 printf("Enter 5 numbers\n");
 for(i=0; i<=4;i++)
 scanf("%d",&a[i]);
 fwrite(a, sizeof(int), 5, fx); // writing numbers from array a to file
 fclose(fx);
 fx = fopen("sample.txt","r"); // opening file to read
 fread(b, sizeof(int), 5, fx); // reading first 5 numbers from file to assign to b
 printf("The numbers stored in file 'sample' are:\n");
 for(i=0; i<=4;i++)
 printf("%4d",b[i]);
 fclose(fx);

MODULE 5
Pointers

POINTERS
•A pointer is a variable that stores the address of another

variable

• Example: An integer variable holds an integer value,
however an integer pointer holds the address of an integer
variable

Operators used with pointers:

1. The address operator: & --------- Gives the address of variable

2. The indirection operator: * ------- Gives the value of variable
that the pointer is pointing to. ----- value at the address

POINTER - DECLARATION
§Pointers must be declared before they are used in program

§A pointer declaration has the following form

 data_type *pointer_variable_name;

§Example: 1) int *p; 2)float *x;

§p is a pointer to an integer quantity

POINTER - INITIALISATION
§Pointer initialization is done with the syntax:

pointer = &variable;
Example:
int a; // Variable declaration
int *p; // Pointer variable declaration
p = &a; // Pointer initialization---- stores address of a in
 pointer p

POINTER - INITIALISATION
§int a = 10;
§This initialisation reserves a memory space to hold integer

value, which stores the value 10 at this location
§p = &a; ----- 5000
§*p = 10 ------ value stored at address

Variable a

Value 10

Address 5000

POINTERS
/* Program to print address of a variable and its value*/
void main()
{
 int a, *p;
 a = 10;
 p = & a;
 printf(“ Address of variable, a = %d \n”, p);
 printf(“ Value in variable, a = %d \n”, *p);
}

NULL POINTER
§Null pointer is a special constant to initialise pointers that

point to nothing

§A null pointer indicates that the pointer does not point to a
valid memory location

§We can create a null pointer by assigning null value during
the pointer declaration

Example:

int *p = NULL;

int *p = 0;

Accessing Data Through
Pointers

§There are two ways to access value of variables:
1. Direct access: We use directly the variable name
2. Indirect access: We use a pointer to the variable
Example:
int quantity, *p, n; // declares integer variables and pointer
variable
quantity = 100; // initialising variable
p = & quantity; // assigns address of quantity to pointer p
n = *p // pointer (*) returns value of variable it points to

Accessing Data Through
Pointers

§There are two ways to access value of variables:
1. Direct access: We use directly the variable name
2. Indirect access: We use a pointer to the variable
Example:
int quantity, *p, n;
quantity = 100;
p = & quantity;
n = *p

Pointer –
Arithmetic
Operations

void main()
{
 int a, b, *p1, *p2, x, y;
 a=12;
 b=4;
 p1 = &a;
 p2 = &b;
 x = *p1 * *p2;
 y = *p1 + *p2;
 printf("X = %d\n", x);
 printf("Y = %d", y);
}

void main()
{
int x, y, *p, *q;
 p = &x;
 q = &y;
 printf("Enter value of x: ");
 scanf("%d",&x);
 printf("\nEnter the value of y: ");
 scanf("%d", &y);
 int temp = *p;
 *p = *q;
 *q = temp;
 printf("\nAfter swapping:\n");
 printf("x = %d\ny = %d", x,y);
}

Pointer –
Swapping
numbers

POINTERS AND ARRAYS
• When an array is declared, compiler allocates a base address

and sufficient amount of storage to contain all elements
• Base address is the location of the first element (index 0) of

the array
• Example: int x[5] = {1,2,3,4,5};

Elements X[0] X[1] X[2] X[3] X[4]
Value 1 2 3 4 5
Address 1000 1002 1004 1006 1008

(Base address) Assuming that each integer requires two bytes

POINTERS AND ARRAYS
Elements X[0] X[1] X[2] X[3] X[4]
Value 1 2 3 4 5
Address 1000 1002 1004 1006 1008

• Example: int x[5] = {1,2,3,4,5}; ---------- The name x is defined
as a constant pointer, pointing to the first element, x[0]
• Therefore, the value of x is 1000, which is the location where

x[0] is stored
• x = &x[0] ------ x = address of first element

POINTERS AND ARRAYS
Elements X[0] X[1] X[2] X[3] X[4]
Value 1 2 3 4 5
Address 1000 1002 1004 1006 1008

• p = x ------If p is declared as a pointer to point to array X
• Therefore, p = &x[0]
p = &x[0] = 1000
p + 1 = &x[1] = 1002
p + 2 = &x[2] = 1004
p + 3 = &x[3] = 1006
p + 4 = &x[4] = 1008

POINTERS AND ARRAYS
void main()
{
 int a[5] = {1,2,3,4,5};
 int *p, i;
 p = a; ----- a means address of a[0]
 printf("Printing array elements using pointer\n");
 for(i=0;i<5;i++)
 {
 printf("\n%d",*p);
 p++;
 }
}

OUTPUT:
1
2
3
4
5

void main()
{
int x[5] = {1,2,3,4,5};
 int *p, sum = 0, i=0;
 p = x; // p = address of x[0]
 printf("Element Value Address\n");
 while (i<5)
 {
 printf("x[%d] %d %u\n", i, *p, p);
 sum = sum + *p;
 i++;
 p++;
 }
printf("Sum = %d\n",sum);
}

int x[5] = {1, 2, 3, 4, 5};

Assuming that each integer
requires two bytes

Pointers and 2D Arrays
• Example of 1D array: int x[5] = {1,2,3,4,5};

Elements X[0] X[1] X[2] X[3] X[4]
Value 1 2 3 4 5

• The nth element of this array can be accessed by many
ways such as:

1. x [n]
2. *(x + n)
3. *(&x[0] + n)

Pointers and 2D Arrays
•2D arrays can be considered as an array of a number of

one-dimensional arrays

•Consider Eg: int a [2][3];

• This can be treated as an array consisting of 2 one
dimensional arrays with 3 elements each

• In 2D arrays also, the array name represents the address
of its zeroth element

• The address of the 0th element is given by a or a+0

int a; // Variable declaration
int *p; // Pointer variable declaration
p = &a; // Pointer initialization---- stores address of a in pointer p

Example:
int quantity, *p, n;
quantity = 100;
p = & quantity;
n = *p

POINTERS AND 1D ARRAYS
Elements X[0] X[1] X[2] X[3] X[4]
Value 1 2 3 4 5
Address 1000 1002 1004 1006 1008

• p = x ------If p is declared as a pointer to point to array X
• Therefore, p = &x[0]
p = &x[0] = 1000
p + 1 = &x[1] = 1002
p + 2 = &x[2] = 1004
p + 3 = &x[3] = 1006
p + 4 = &x[4] = 1008

*(p + i) OR *(x + i)
represents

element x[i]

void main()
{
 int n, arr[20], i, *p;
 p = arr; // p assigned address of first element
 printf("Enter size of array\n");
 scanf("%d", &n);
 printf("Enter elements of array\n");
 for (i=0;i<n;i++)
 scanf("%d",(p+i)); // (p+i) equivalent to &arr[0]…
 printf("Printing array elements using pointer\n");
 for(i=0;i<n;i++)
 {
 printf("\n%d",*p);
 p++;
 }
}

Read & print a
1D array

2D
Arrays

* (* (mat + row) + col)

Value stored in the cell (i, j) :

*(* (p +i) + j)

POINTERS AND 2D ARRAYS
An element in a two dimensional array can be represented by:

*(* (p +i) + j) OR *(* (a +i) + j)

Address of the element:

* (a +i) + j

/*Program to find sum of two matrices*/
void main()
{
int a[10][10],b[10][10], row, col,i,j;
int s[10][10];
printf("Enter order of matrices\n");
scanf("%d%d",&row, &col);
printf("Enter elements of matrix_a row-wise\n");

for (i=0; i<row; i++) //Entering the Matrix
{
 for(j=0; j<col; j++)
 {
 scanf("%d",*(a+i)+j); // *(a+i)+j is equivalent to &a[i][j]
 }
}

for (i=0; i<row; i++) // Finding sum of matrices
{
 for(j=0; j<col; j++)
 {
 ((s+i)+j) = *(*(a+i)+j) + *(*(b+i)+j); // *(*(s+i)+j) is equivalent to s[i][j]

 }
}
for (i=0;i<row;i++) // PRINTING SUM
{
 for(j=0;j<col;j++)
 {
 printf("%4d", *(*(s+i)+j));
 }
printf("\n");
}

int a; // Variable declaration
int *p; // Pointer variable declaration
p = &a; // Pointer initialization---- stores address of a in pointer p

POINTERS AND 1D ARRAYS
Elements X[0] X[1] X[2] X[3] X[4]
Value 1 2 3 4 5
Address 1000 1002 1004 1006 1008

• p = x ------If p is declared as a pointer to point to array X
• Therefore, p = &x[0]
p = &x[0] = 1000
p + 1 = &x[1] = 1002
p + 2 = &x[2] = 1004
p + 3 = &x[3] = 1006
p + 4 = &x[4] = 1008

*(p + i) OR *(x + i)
represents

element x[i]

POINTERS AND 2D ARRAYS
An element in a two dimensional array can be represented by:

*(* (p +i) + j) OR *(* (a +i) + j)

Address of the element:

* (a +i) + j

Pointers and Strings
§Strings are character arrays and are declared and

initialised as:

§char str [6] = “hello”; ------ other formats discussed in module 3

Element str[0] str[1] str[2] str[3] str[4] str[5]
Value h e l l o \0
Address 1000 1001 1002 1003 1004 1005

The variable name of the string str holds the address of
the first element of the array

void main()
{
 char name[4] = "PIC"; // declaring string
 char *ptr; // declaring pointer
 ptr = name; // initialising pointer
 while (*ptr != '\0')
 {
 printf("%c",*ptr);
 ptr++;
 }
}

Pointers and Strings
Index 0 1 2 3
Value P I C \0

OUTPUT
PIC

Pointers and Strings
Printing the contents of string:
1. printf(“%s”, str);
2. puts (str);

#include<stdio.h>
#include<conio.h>
void main()
{
 clrscr();
 char *name;
 name = "MACE";
 puts(name);
 getch();
}

Call by Reference
• Pointers can be passed to functions

• Address of a variable can be passed to the function as
arguments

• Arguments are to be declared as pointer type

•When an address is passed to a function, the parameters
receiving the address should be pointer

The process of calling a function using pointers to pass
the address of variables is called call by reference

• In call by value method, we can not
m o d i f y t h e va l u e o f t h e a c t u a l
parameter by the formal parameter.

Call by
Reference

void main()
{
 void add (int*);
 int x = 10;
 printf("Before function call, x = %d\n", x);
 add (& x); // call by reference or address
 printf("After function call, x = %d", x);
 getch();
}
void add (int *p)
{
*p = *p + 10; // add 10 to the value stored at address p
}

p is the address of the variable

x,

*p holds the value at the

address p

void swap(int *a, int *b);
main()
{
 int m = 10, n = 20;
 printf("m = %d\n", m);
 printf("n = %d\n\n", n);
 swap(&m, &n); //passing address of m and n to the swap function
printf("After Swapping:\n\n");
printf("m = %d\n", m);
printf("n = %d", n); }
void swap(int *a, int *b)
{
 int temp;
 temp = *a;
 *a = *b;
 *b = temp;
}

void main()

{

 void swap_p (int*, int*);

 void swap (int, int);

 int x = 10, y = 20;

 printf("\nValue of x and Y:\n\n");

 printf("X = %d\tY = %d\n\n", x,y);

 printf("After call by value:\n\n");

 swap(x,y);

 printf("X = %d\tY = %d\n\n", x,y);

 printf("After call by reference:\n\n");

 swap_p(&x,&y);

 printf("X = %d\tY = %d\n\n", x,y); }

void swap (int a, int b)
{
 int temp = a;
 a = b;
 b = temp;
 printf("a = %d\tb = %d\n\n", a,b);
}

void swap_p (int *a, int *b)
{
 int temp = *a;
 *a = *b;
 *b = temp;
}

void main()

{

 void swap_p (int*, int*);

 void swap (int, int);

 int x = 10, y = 20;

 printf("\nValue of x and Y:\n\n");

 printf("X = %d\tY = %d\n\n", x,y);

 printf("After call by value:\n\n");

 swap(x,y);

 printf("X = %d\tY = %d\n\n", x,y);

 printf("After call by reference:\n\n");

 swap_p(&x,&y);

 printf("X = %d\tY = %d\n\n", x,y); }

void main()
{
int sum_array(int*, int);
 int arr[20], n, i, *p, sum;
 p = arr;
 printf("Enter size of array\n");
 scanf("%d", &n);
 printf("Enter the elements of array\n");
 for (i=0; i<n; i++)
 scanf("%d", &arr[i]);
 sum = sum_array(arr,n);
 printf("Sum = %d", sum);
 getch();
}

int sum_array(int *array, int size)
{
 int s = 0, j;
 for (j = 0; j < size; j++)
 {
 s = s + *array;
 array++;
 }
 return (s);
}

THANK YOU

